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Curves

Definition (Parameterized Differentiable Curve):

We say a curve α : I → R3, where I is some open in-
terval (a, b) ⊂ R, is a differentiable curve if t ∈ I , we can
write α(t) = (x(t), y(t), z(t)) such that x(t), y(t), z(t) are
infinitely differentiable.
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Example

Figure: A circle parameterized by α(t) = (cos(t), sin(t), 0)on(0, 2π)Rishi Gujjar (Mentor: Jingze Zhu) MIT PRIMES
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Regularity

Definition (Regular Curve):

Given a differentiable curve with a parameterization
α : I → R3, we say that α is regular if α′(t) ̸= 0.
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Example

Figure: A trefoil is a regular curve
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Arc Length

Definition (Arc Length):

Given a differentiable curve α : [a, b] → R, we say the
arc length L is

L =

∫ b

a
|α′(t)|dt.
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Tangent, Normal, Binormal
Let α : I → R3 be a differentiable curve parameterized by arc
length.

Definition (Curvature):

We define the curvature, k(s) as |α′′(s)|.

Definition (Tangent, Normal, Binormal):

We define the tangent t(s) as α′(s), the normal n(s) = α′′(s)
k(s)

and the binormal vector b(s) = t(s)× n(s).
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Frenet frame

Together the tangent, normal and binormal vector create a Frenet
frame.
These are related through the following differential equations,

dt

ds
= kn

dn

ds
= −kt− τb

db

ds
= τn.
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Isoperimetric Inequality

Theorem (Isoperimetric Inequality):

Let C , parameterized by α : I → R2 be a simple
closed plane curve of length ℓ that bounds an area of A,
then,

ℓ2 − 4πA ≥ 0

where equality holds if and only if C is a circle.
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Four Vertex Theorem

Definition (Convex):

We say that a regular plane curve is convex if for ev-
ery t ∈ I = [a, b], the trace of α([a, b]) lies on one side of
the half plane of the tangent line through α(t).

Definition (Vertex):

A vertex of a regular plane curve is a point t ∈ I = [a, b]
such that k′(t) = 0.
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Four Vertex Theorem cont.

Theorem (Four Vertex Theorem):

All simple, closed, convex curves have at least 4 ver-
tices.

Figure: Ellipse with 4 Vertices

Rishi Gujjar (Mentor: Jingze Zhu) MIT PRIMES

Differential Geometry



Introduction Global Properties of Regular Curves Regular Surfaces Fundamental Forms Acknowledgements

Regular Surfaces

Definition (Regular Surface):

We say that a subset S ⊂ R3 is a regular surface if
the following conditions are met:

▶ For each p ∈ S , there exists a neighborhood V ⊂ R3

and map x : U → V ∩ S where U ⊂ R2 and open.

▶ x(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ U is
infinitely differentiable.

▶ x is a homemorphism, meaning that x has a
well-defined inverse x−1 that is continuous.

▶ For every q ∈ U, dxq : R2 → R3 is one-to-one.
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Examples

Figure: Sphere and Catenoid(Wikipedia Commons)
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Tangent Plane

Definition (Tangent Plane):

We define the tangent plane to be plane spanned by
all the tangent vectors at some point p on a regular surface
S . We denote this plane as Tp(S).

Notably, xu = ∂x
∂u ,xv = ∂x

∂v creates a basis for the tangent plane.
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First Fundamental Form

Definition (First Fundamental Form):

For a regular surface S , the first fundamental form is
Ip(w) = ⟨w ,w⟩p where ⟨, ⟩ is the standard dot product in
R3, p ∈ S , and w ∈ Tp(s).

Let α(t) = x(u(t), v(t)), t ∈ V be a parameterized curve defined
in a neighborhood around p such that α(0) = x(u0, v0) = p, then

Ip(α
′(0)) = ⟨α′(0), α′(0)⟩
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First Fundamental Form cont.

Ip(α
′(0)) = ⟨xuu′ + xvv

′, xuu
′ + xvv

′⟩p
= ⟨xu, xu⟩p(u′)2 + 2⟨xu, xv ⟩pu′v ′ + ⟨xv , xv ⟩p(v ′)2

= E (u′)2 + 2Fu′v ′ + G (v ′)2.
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First Fundamental Form cont.

Definition (First Fundamental Form Coefficients):

This gives rise to the coefficients,

E (u, v) = ⟨xu, xu⟩p
F (u, v) = ⟨xu, xv ⟩p
G (u, v) = ⟨xv , xv ⟩p
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Applications

Definition (Area):

Let R ⊂ S be a bounded region of a regular surface.
Then the area of R is∫∫

Q
|xu × xv |dudv Q = x−1(R).

Since |xu × xv |2 + ⟨xu, xv ⟩2 = |xu|2|xv |2, we have

A =

∫∫
Q

√
EG − F 2dudv .
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Gauss Map

Definition (Gauss Map):

We can find the normal vector to the tangent plane of
a regular surface using,

N(q) =
xu × xv
|xu × xv|

(q) where q ∈ x(U).

Using this, we can impose a map N : S → S2 where S2 is
the unit sphere. This is called the Gauss Map.
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Second Fundamental Form

Definition (Second Fundamental Form):

Using the differential dNp (the measure of how much
N pulls away from N(p) in some neighborhood around p),
we can define the second fundamental form,

IIp(w) = −⟨dNp(w),w⟩p.

Rishi Gujjar (Mentor: Jingze Zhu) MIT PRIMES

Differential Geometry



Introduction Global Properties of Regular Curves Regular Surfaces Fundamental Forms Acknowledgements

Normal Curvature

Definition (Normal Curvature):

If C is a regular curve passing through p ∈ S , k the
curvature of C at p, and cos θ = ⟨n,N⟩ where n is the
normal with respect to C , and N is the normal with respect
to S . Then the normal curvature of C ∈ S is kn = k cos θ.
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Normal Curvature cont.

Definition (Principal Curvatures):

We say that the maximum normal curvature is k1 and
minimum as k2 when considering all directions through p.
The corresponding eigenvectors e1 and e2 are considered the
principal directions.
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Applications

Theorem (Euler Formula):

As kn = IIp(w), by going along the principal direc-
tions, we can show that

kn = k1 cos
2(θ) + k2 sin

2(θ).
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Applications cont.

Definition:

We say that the Gaussian curvature of S at p is

K = k1k2

and the mean curvature as

H =
k1 + k2

2
.
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Examples

Figure: Unit Sphere: K = H = 1 Figure: Catenoid: H = 0
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